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Modeling of InP Crystal Growth by the MLEK
Process

_ Steven A. Orszag, Vadim Borue, Ananias Tomboulidas & Eytan Barouch
Cambridge Hydrodynamics, Inc. P.O. Box 1403, Princeton, NJ 08542

Abstract

The goal of this work is to achieve prototype simulations of the MLEK process for
growth of InP crystals. We have made several key advances in this work, including
numerical simulations of three-dimensional time-dependent low Prandtl-number melt
convection, with differential rotation, and magnetic fields. To do this we have developed
a 3D general-geometry spectral element code. We have demonstrated how rotation and,
especially, differential rotation can stabilize melt flows and how magnetic fields can also
stabilize these flows. We have also shown that magnetic fields, in certain parameter
regimes, can act, somewhat surprisingly, to destabilize the flow. We have also extended
our renormalization-group-based turbulence models to describe stratified flows across

the full range of low-moderate-high stratification.
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1 Introduction

Indium Phosphide (InP) offers much promise for advanced photoelectronic and electronic
device development because of its attractive physical properties that allow high power, high
frequency, and short gate lengths. However, the growth of InP crystals involves a number of
major technological challenges because of the need to use high-pressure environments (due
to the high vapor pressure of the melt), the difficulty of working with the volatile component
= phosphorus, the complex stoichiometry of the mixtures involved, and the sensitivity of the
grown crystals to defects, twinning, and other imperfections. An attractive method to grow
InP crystals in practice is the use of the magnetic liquid encapsulated Kyropoulos (MLEK)
technique but the complexity of this process limits the opportunity to use trial-and-error

experimental techniques to optimize the crystal growing process.

In our work under AFOSR Contract F49620-94-C-0035, we have made much progress
in the simulation of the flow fields involved in the MLEK and related growth processes.
We have made several key advances in this work, including numerical simulations at low
Prandtl number melt convection with rotation, differential rotation, and magnetic fields. We
have demonstrated how rotation and, especially, differential rotation can stabilize melt flows
and how magnetic fields can also stabilize these flows. We have also shown that magnetic
fields, in certain parameter regimes, can act, somewhat surprisingly, to destabilize the flow.
We have developed a simplified model that illustrates this effect of magnetic fields. We
have also extended our renormalization-group-based turbulence model to describe stratified
flows across the full range of low-moderate-high stratification. Our simulations give the
first, spectrally accurate, simulations of 3D low Prandt! number convection with coupled
rotation, differential rotation, and magnetic field. As such, we believe that they represent a
change in the state-of-the-art of crystal growth modeling and simulation. In addition, our
turbulence transport model for stratification should find wide application to problems of
Air Force interest. For example, the new model can enable advances in the problem of the
dynamics of aircraft wake vortices in stratified atmospheres, a problem with applications to
both civilian and military aircraft (e.g., if stratification can cause trailing vortices to bounce

off a stratified atmospheric layer into the path of trailing aircraft).




2 Technical Background - Simulation of Melt Flows

We have studied flows in crystal melts in several situations. First, we consider a model
problem consisting of a cylindrical crucible of radius R and height H (see Figure 1). Here we
have a prototype crystal with radius r, such that r/R = 0.5, being pulled from the top surface
of the melt. The crystal is allowed to rotate at an angular velocity €2, different from the one
of the crucible Q;. The solid vertical and bottom boundaries of the crucible are maintained
" at constant non-dimensional temperature of 77 = 2, whereas the crystal-melt interface is at
a fixed temperature of T, = 1. The top free surface is assumed to have negligible heat flux to
the surrounding gas (an assumption which is sometimes removed). The equations of motion
are the incompressible Navier-Stokes equations, together with the Boussinesq approximation
for the effect of the heating. The length used for non-dimensionalization is the radius of the

crucible R, whereas the non-dimensionalizing temperature is the difference 71 — T5.

The boundary condition at the top is modified in order to include radiation or other kinds
of heat-loss, whereas the base of the crucible can be insulated instead of being at constant
temperature. The process of crystal growth could potentially be represented by a suction
velocity v, at the crystal-melt interface, but this velocity is usually negligible when compared

to the motion of the fluid.

Assuming that we always work in the frame of reference of the rotating crucible, and

that the Boussinesq approximation is valid, the equations of motion are

ov _ B9(T1 — T5)R V o2

at-i—v-Vv = —Vp—-20; xv+ 2 T—i—URVV

5 (1)
T o,

5 +v.-VT = URVT

Depending on the choice of the reference velocity scale U, the relevant non-dimensional

parameters can be quite different.

For a problem without rotation of any sort, governed purely by natural convection, and

assuming that the geometry is fixed and the aspect ratios H/D (where D = 2R) and r/R
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Figure 1: Geometric configuration of crystal melt crucible




are constant, the relevant parameters are the Grasshof number, and the Prandtl number,

defined as:

Gr = ﬁg(Tl”T2)R3 (2)

m~=§ (3)

-

and the corresponding non-dimensionalized equations become:

ov 1,
E*FV-VV = —Vp-l—T-l-}—szV
(4)
oT 1 )
otV VT = gV T

when U is chosen to be U = v/RGr'/2. Here Re = Gr'/2. These are the actual forms of the

equations that we use for the case of pure natural convection.

In the case of rotation, the non-dimensionalization can be based on either a diffusive velocity
scale (as in the non-rotating case), or a scale which is defined by rotation, i.e. U = QR.
In this case, there is one more non-dimensional parameter in addition to Gr and Pr, the

Ekman number F, defined as:

v

E:mm

(5)

Assuming that U is still U = v/ RGr/?, the corresponding non-dimensionalized equations

become:

ov Exv 1,

at—}—v~Vv = —Vp—2R6E+T+EVv

o7 (6)
1

— VT = vir

8t+v RePr
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where k is the direction of rotation €, (here aligned with the z axis), and Re is again equal

to Re = Gr!/2.

Finally, when there is also differential rotation between the crucible Q; and the crystal Q,,

the Rossby number is also important:

o - )

Ro =
? (Q + Q2)

(7)
and its influence comes only through the boundary conditions at the crystal-melt interface.

Following Jones [2] the range of parameters may be subdivided into the following five

regimes.
Regime I: Heating.

No rotation is assumed. The relevant problem is convection in a vertically heated slot.
The flow is typically three-dimensional and unsteady, because of natural convection, for most
practical ranges of Gr number. In addition, at the free surface, “spoke” instability patterns

could be formed due to heat loss to surrounding environment.
Regime II: Crucible rotation.

In pure form (Gr = 0) the relevant problems are stability of the flow around a rotating

disk (Ekman layer) and the stability of the flow inside the rotating crucible, [3], [4].
Regime III: Differential rotation.

This regime includes instabilities connected with regime II, but also includes new insta-
bilities due to the dynamics of the shear layer between the rotating crystal and the crucible
melt. An interesting problem to study is at which Rossby number the flow becomes non

axisymmetric.
Regime IV: Disk rotation with heating.

This is a regime where geostrophic motion can be expected. Usually rotation somewhat
suppresses instabilities, even though unsteady three-dimensional flow, because of baroclinic

instabilities, can be expected. An interesting problem to study is what is the optimal rotation




frequency that maximally suppresses thermal convection instabilities.
Regime V: Differential rotation with heating.

This regime is similar to regime IV, but the motion can be non axisymmetric because of
both baroclinic instabilities, and because of shear layer instabilities arising from the differ-

ential rotation.

3 Numerical Results: Simulation of Melt Flows

The numerical experiments that we have performed are both two-dimensional and three-
dimensional and extend all the way from Regime I with only natural convection, to Regime
V which includes heating and differential rotation. Here we confine ourselves to some rep-
resentative results, with detailed results presented in papers now in the publication process,
[1]. The code used for all these studies is a general geometry spectral element code with
high order accuracy in space and time. Numerous resolution studies (discussed in the papers
mentioned above) have been performed to ensure the accuracy and reliability of the results

presented here.

3.1 Crystal melt flow - 2D simulations

3.1.1 High aspect ratio crucible H/D=1

The values of the parameters used in these simulations were chosen so that they correspond
to the values used by [5] in the simulation of buoyancy driven convection in Si melts. The
particular case picked was one in the unsteady regime, as reported in [5], and corresponds
to a value of Gr = 2.8 x 105, with Pr = 0.03. The simulations reported in that paper are

three-dimensional however. The aspect ratio of the crucible for this set of simulations is

H/D =1.

The flow starts from rest and Gr is gradually increased from 10,000 to 40,000 and then to

2.8 x 108. The first two simulations reach a steady state and then the flow and temperature




field at Gr = 40,000 is used as an initial condition for the calculation at Gr = 2.8 x 10°.
Time history of several flow variables for this run is plotted in Figure (2). It can clearly
be seen that even for this axisymmetric case, the flow is unsteady with moderate amplitude
fluctuations. Taking into account that the axisymmetric mode is usually very stable, and
that it is typically the first or second azimuthal mode that goes unstable first, this result

can be interpreted as an instability of the three-dimensional flow as well.

After the pure boyancy driven flow reaches a quasi steady state, rotation is introduced
in order to study its effect on the stabilization of the flow. The magnitude of rotation
introduced gives a value of the Ekman number E = Gr~'/2 ~ 1.67 x 1073, which is typical of
rotation frequencies in practice. The effect of rotation on the flow is quite significant, since
it immediately reduces the amplitude of the fluctuations as seen in Figure (2), for times ¢ >
87.5. The fact that the flow is becoming stabilized with rotation in the axisymmetric regime,
does not necessarily mean that it is also stable if the flow is allowed to be three-dimensional.
Therefore three-dimensional simulations were performed. The three dimensional simulations
were initiated by using the two dimensional field with rotation at ¢ = 172.5 as an initial

condition.

The difference between the flow structure with and without rotation is illustrated in
Figures (4), and (5), respectively. As can be observed in the Figures, the flow with no
rotation consists of the recirculating cells, and the cold fluid is able to convect all the way
to the bottom of the crucible; on the other hand, in the case of rotation, there exists only
one recirculation cell and the amplitude of the fluctuations is much smaller. The difference
between the amplitude of the vorticity field generated by the thermal convection for the two
cases is demonstrated in Figure (6) where the maximum vorticity in the bulk of the flow is of
order O(10) without rotation and O(1) with rotation. For both cases the global maxima of

vorticity occur on the side walls of the crucible, as expected for such high Grasshof numbers.

3.1.2 Low aspect ratio crucible H/D=0.25

Several simulations were carried out for a crucible with an aspect ratio of H/D = 0.25,

since low aspect ratio crucibles are more common in practice. The runs performed for this
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Figure 2: Time history of u,v,T for Gr = 2.8 x 10%, pure boyancy, axisymmetric




Czochralski melt, Gr=2,777,777, boyancy and rotation after t > 87.5
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No Rotation

Gr=2.8x1 06, Axisymmetric

Pressure P Temperature T

Figure 4: Instantaneous flow field without rotation for crucible with H/D=1, axisymmetric

11




Rotation
Gr=2.8x1 06 , E=6x1 0;4Axisymmetric

Pressure P Temperature T

Figure 5: Instantaneous flow field with rotation for crucible with H/D=1, axisymmetric
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E= 6x107¢

scale: [-7, +7] scale: [-0.5, +0.5]

Figure 6: Instantaneous vorticity field (a) without rotation and (b) with rotation, for crucible

with H/D=1, axisymmetric
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configuration again range from 2-D simulations to 3-D simulations with rotation and natural
convection; the effect of crystal differential rotation has not been investigated yet. The value
of the Grasshof number used in the simulations was picked in a way such that a comparison
between the high (H/D = 1) and the low (H/D = 0.25) aspect ratio crucibles is meaningful.
Keeping all other parameters the same, the length scale used for non-dimensionalization can
be either L = (HR)'? or L = (HR?)'/3, which results in an equivalent Gr number, for the
low aspect ratio crucible, equal to 2.8 x 10 or 4.4 x 10° respectively. This value is equal
or higher than the one used for the high aspect ratio crucible and one might expect a more
chaotic flow to be present. In addition, one has to take into account the fact that now the
total volume of the liquid metal is double the one corresponding to the high aspect ratio

crucible, for the same diameter crystal grown.

The 2-D simulations at the Gr number mentioned in the previous paragraph, reached a
steady state for the low aspect ratio crucible. Since the 2-D flow for the high aspect ratio
crucible H/D = 1 is time dependent with an order 1 amplitude of velocity fluctuations, this
fact already implies that flow in the low aspect ratio crucible is less unstable and will possibly
lead to smaller fluctuations in the 3-D flow as well. Moreover, isocontours of azimuthal
vorticity indicate the presence of only one vortical cell structure in the crucible, whereas
two such structures are present in the axisymmetric simulations for the high aspect ratio
crucible. This can be observed in Figure (8) where isocontours of flow variables from the
steady state field are plotted. As can be observed in the figure, there exists a small pocket of
stagnant fluid close to the lower right hand corner of the crucible, which could be a potential
source of instability; this implies that a rounded crucible, following the streamlines could be
more effective in stabilizing the flow. Time histories of flow components at several points
inside the crucible are plotted in figure (7), and as can be observed all values reach a steady

state for long times.

3.1.3 Rounded low aspect ratio crucible H/D=0.25

Besides a low aspect ratio, the crucibles used in practice are rounded at the bottom so that
they have no abrupt corners. Therefore, our current and near future studies are focusing on

crucible shapes similar to the one shown in figure (9) which is a combination of a cylindrical
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Low aspect ratio crucible, Gr=2.8x10°, Axisymmetric
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Low Aspect Ratio Crucible:
Axisymmetric Steady state
Gr=2.8x10°

Axial U: -0.72, 0.41 Radial V: -0.43, 0.73

Pressure P: —1.02, 0.05 Temperature : 0,1

Figure 8: Steady state flow field for crucible with aspect ratio H/D=0.25, and Gr = 2.8 x 10°
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part on top and an ellipsoid part at the bottom. The simulations performed up to now are
only axisymmetric and as can be observed in figure (10), the flow at Gr = 2.8 x 10° reaches
a steady state, in a way similar to the flow in the low aspect ratio crucible with corners. As
can be observed in Figure (9), the flow again consists of only one recirculating cell, but now

the crucible rounded wall follows closely the flow streamline structure.

3.2 Crystal melt flow - 3D simulations

These simulations start with initial conditions from the 2D simulations at Gr = 2.8 x 10° by
imposing a perturbation on the first azimuthal mode of total energy of the order of 1077. Two
different types of simulations are illustrated here, with high aspect ratio crucible H/D =1,
and with low aspect ratio H/D = 0.25.

3.2.1 High aspect ratio crucible H/D=1

1. Heating, Crucible Rotation, Differential Crystal Rotation

An example is simulation with rotation of both the crucible and differential rotation of
the crystal with Rossby number Ro = 2. These simulations show that the flow gradually
develops three-dimensionality in the m = 2 azimuthal mode, possibly due to shear layer
instabilities because of the differential rotation, whereas the m = 1 perturbation decays in
time, implying that baroclinic instability might not be present. In general, the transition to
three-dimensionality, is a much slower one (than the natural convection case), and it involves
only even azimuthal modes (m=2,4,6,..). The time history of the energy of the first three
even azimuthal modes is shown with a solid line in Figure (11); the first three odd modes
are plotted as solid lines in Figure (15). A typical azimuthal energy spectrum is shown in
Figure (16) where the difference between the amplitudes of the even versus odd modes is

evident.

Isocontours of instantaneous flow variables on both r — z and r — ¢ planes are shown in
Figures (12), and (13), respectively, and as can be observed - especially from temperature

isocontours - the flow demonstrates an even m = 2 symmetry.
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Roun rucible:
Axisymmetric Steady state
Gr=2.8x10°

Axial U: -0.78, 0.96 Radial V: -1.01, 1.02

Pressure P: -1.42, 0.065 : Temperature T: 0, 1

Vorticity: -8.6, 63.5

Figure 9: Isocontours of velocity, pressure, temperature, and vorticity shown for rounded
crucible with heating at Gr = 2.8 x 108.
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Rounded crucible, Gr=2.8x105 Axisymmetric
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The structure of the flow in terms of axial vorticity isocontours is shown in Figure (14);
as can be observed from the figure, there is clearly a symmetry in the flow associated with
the m = 2 mode, which is dominant, demonstrating itself as one main cyclonic vortex and
two counter-rotating ones. This picture is similar to experimental observations reported in

[8], where the experiment involved isothermal rotation of a disk inside a rotating crucible.
2. Heating

Simulations with pure natural convection. At ¢ = 80.0, and after the three-dimensional
flow discussed above developed some three-dimensionality showing that only even modes are
growing, rotation was stopped in order to see what the corresponding final states of the flow
would be without rotation. The results are shown as dotted lines which start at ¢ = 80.0, in
Figures (11) and (15). As soon as rotation is stopped, all non-axisymmetric modes increase
sharply in energy. This might be an indication that for the range of parameters used in
practice, pure natural convection can be violently three-dimensional and unsteady, whereas
rotation stabilizes the flow and reduces the fluctuation levels. In some cases it might even be
that rotation prevents three-dimensionality. As can be observed in Figures (17), and (18),
which show isocontours of flow variables on r — z and r — ¢ planes, the flow is quite chaotic
and no particular symmetries are evident. Also, although the Prandtl number is very low,
low temperature fluid from the top of the crucible convects all the way to the bottom of the

crucible, indicative of the large amplitude fluctuations present in the flow.
3. Heating, Crucible Rotation

The results of simulations with natural convection and only crucible rotation show that as
soon as differential rotation of the crystal is stopped, at ¢ = 232.5, the three-dimensionality
rapidly increases, since now all non-axisymmetric modes (even and odd) grow in time. This
can again be observed in Figures (11)- (15) by noting the dotted lines which start at t = 232.5
and increase in amplitude. The amplitude of observed fluctuations in this case seems to be
much larger than for the case of differential rotation, but it still seems to be smaller than for
the pure natural convection case. In addition, the flow structure for the case with rotation
(but no differential rotation), shown in Figures (19) and (20), is not as chaotic as the

pure natural convection case, described in the previous paragraph, although there is still no
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Figure 11: Time history of even azimuthal mode energies

21




Rotation—-Diff. Rotation
Gr=2.8x10°, E=6x10"% Ro=1

Azimuthal W

Temperature T

Figure 12: Instantaneous isocontours of flow variables on a r — z plane for case with heating

rotation, and differential rotation
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Rotation-Diff. Rotation
Gr=2.8x10°, E=6x10"" Ro=I

z=1 z=1

Axial U Radial V
z=1 z=1.75

Azimuthal W Temperature T

Figure 13: Instantaneous isocontours of flow variables on a r — ¢ plane for case with heating

rotation, and differential rotation
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Figure 14: Isocontours
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of axial vorticity at z = 1 for
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No Rotation
Gr=2.8x10°

Radial V

Azimuthal W Temperature T

Figure 17: Instantaneous isocontours of flow variables on a r — z plane for case with only

heating
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No Rotation
Gr=2.8x10°

=]

Radial V
z=1.75

Azimuthal W Temperature T

Figure 18: Instantaneous isocontours of flow variables on a r — ¢ plane for case with only

heating
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evidence of any symmetries present in the flow.

3.2.2 Low aspect ratio crucible H/D=0.25

The 3-D runs were performed using the axisymmetric steady state result as initial condition,
with a 10~® perturbation in the m = 1 azimuthal mode. As figure (21) shows, the even modes
(m = 2,4...) increase exponentially in amplitude, whereas the odd modes don’t start to pick
up until after the even modes have saturated to a certain amplitude. Rotation at an angular
velocity ©; = 1 is turned on at ¢t = 247.5. The flow becomes three dimensional for both
cases (with or without rotation), however, the odd modes grow faster for the case without
rotation and all modes saturate at slightly lower amplitudes when rotation is turned on. A
typical instantaneous flow field, shown in terms of velocity and temperature isocontours, is
plotted in figures (22), and (23), for the case with both heating and rotation. It can be
observed in these figures that there exists a dominance of even modes in the flow, and in

particular of the m = 4 azimuthal mode.

3.2.3 Rounded low aspect ratio crucible H/D=0.25

Preliminary 3-D simulations, without rotation, indicate that the flow also becomes three-
dimensional, starting with the even modes, but these simulations have to be continued
further. It is interesting to note that since the flow in low aspect ratio rounded crucibles
seems to be less unstable than high aspect ratio crucibles with corners, one might be able to
perform full three-dimensional numerical simulations at parameters (Gr, E, Ro) which are
close to realistic values used in practice; that is to say that, although the same flow without
rotation or even without differential rotation might be too chaotic to resolve with a DNS,
the flow with all the stabilizing mechanisms turned on could be not out of reach. This does

not necessarily mean that the resulting flow is axisymmetric.
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Gr=2.8x10° E=Gr Z6x10™*

Radial V

Azimuthal W Temerature T

Figure 19: Instantaneous isocontours of flow variables on a r — z plane for case with heating

and rotation
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Figure 20: Instantaneous isocontours of flow variables on a r — ¢ plane for case with heating

and rotation
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Figure 21: Time history of 3-D mode energies for flow in low aspect ratio crucible at Gr =

2.8 x 108




Low aspect ratio crucible:
Rotation—thermal convection
Gr=2.8x10° E=Gr""=6x10"*

z=0.5 z=0.5

Radial V
z2=0.875
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Figure 22: Isocontours of axial velocity and temperature shown for a top view for the low

aspect ratio crucible with heating and rotation.
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Low aspect ratio crucible:
Rotation—thermal convection
Gr=2.8x10°, E=Gr""=6x10""

Axial U

Radial V

Azimuthal W

Temperature T

Figure 23: Isocontours of axial velocity and temperature shown for a front view for the low

aspect ratio crucible with heating and rotation.
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3.3 Magnetic field simulations

Two different formulations have been developed and implemented for the case of an external
magnetic field applied to the crystal melt. In the first one, we solve the full magnetic field
and hydrodynamic equations, whereas in the other we assume that the magnetic Reynolds
number Re,, is very small thereby allowing simplification of the solution procedure.

The governing MHD equations at the low magnetic Reynolds number limit are

-

ov 2k xv 1 9 .
N Vv e —Up_ 2 T+ NjxB
ot TVVVE VP g RV VT AN xBo

J=-V¢+vxBg

V24 =V (v x By)

g%:n'(VXBO)

Here, Re is again defined as Re = Gr'/2, B, is the imposed axial magnetic field, and ¢ is
the electric potential corresponding to the induced electric field. We present our results in

terms of the magnetic parameter N = p—?]g;Rem. N is related to the Hartmann number by

2
Ha* = NRe = &RemRe '

pU?
Various simulations have been performed with the main focus being to understand the in-
fluence of the magnetic field on the melt flow. All simulations performed up to now employ
an axial magnetic field, since a transverse one would automatically destroy axisymmetry
(although will not necessarily increase fluctuations). From our simulations, it seems that the

imposed magnetic field, depending on its amplitude, can either dampen three dimensionality

or enhance it. This can be observed in Figure (24), where one sees that a magnetic field

with a magnetic parameter N = 1 dumps all non-axisymmetric modes, whereas a value of
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20 increases the amplitude of non-axisymmetric modes. In fact, an intermediate value, e.g.
N = 5, reduces the amplitude of the non-axisymmetric modes but not to zero. In order to
visualize the effect of the magnetic field on the flow field, stream-wise vorticity isocontours
at z = 1 are plotted in figures (25a), (25b), (25c) and (25d). As can be seen in these
figures, the resulting vortex shape for N = 1 (Figure 25a) is a circle, corresponding to an
axisymmetric flow; on the other hand, for N = 5 (Figure 25b), the vortex shape is only
slightly distorted from axisymmetry, whereas for N = 10 (Figure 25c) and 20 (Figure 25d)
the main central vortex is distorted from a circular shape to an ellipse with a higher aspect
ratio than the case without magnetic field, shown in figure (14). In addition, the vortex

structure rotates with respect to the rotating crucible. .

We have also extended the analysis due originally to Chandrasekhar (Oxford University
Press, 1961) to analyze the effects of magnetic fields on the stability of Bénard convection.
This analysis which involves the solution of a 12th order boundary value problem, leads
to interesting insights on the mechanisms by which magnetic fields can be destabilizing, as

shown in the following section.

3.3.1 Influence of rotation and magnetic field on the stability of thermal con-

vection

The growing crystall is usually rotated as it is pulled. The objective is to improve uniformity
by providing a viscous shear layer that tends to isolate the growth interface from the turmoil
deeper in the melt. The crucible is also rotated to smooth out thermal asymmetries that
might arise from irregularities in the heating. Sometimes the crystal melt is stabilized by
the use of a magnetic field. Crystal rotation and magnetic field individually may suppress

curtain instabilities, but combined together they may lead to new instabilities.

As an example of new instabilities, which could potentially arise by the combined use
of rotation and magnetic field, we consider, following Chandrasekhar (1961) [9], the case of
Rayleigh-Bénard convection in the presence of rotation and magnetic field. The convection
is characterized by the Rayleigh number Ra, Prandtl number Pr, Taylor T or Ekman E

numbers, with the Taylor number being 7' = 1/E?, and the Hartmann number Ha.
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Figure 24: Time history of the even azimuthal mode energy with the application of different
magnetic fields
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¢) N=10 d) N=20

Figure 25: Isocontours of axial vorticity at z = 1 for the case with a magnetic field with a)
N =1, b) N=5, ¢) N=10, and d) N=20




Separately both rotation and magnetic field inhibit the onset of instability and they both
elongate the cells which appear at marginal stability. These effects have a common origin:
the flow becomes more two-dimensional. Acting together, however, they may lead to a new
instability. The reason behind this is that rotation and magnetic field present together have
conflicting interests. Rotation induces a component of vorticity in the direction of rotation.
It results in the streamlines becoming closely wound spirals with motions principally confined
to planes transverse to the rotation. On the other hand, a magnetic field would suppress the
motion transverse to its direction and the motion along the magnetic field becomes dominant.
In addition, the instability in the presence of rotation sets in as overstability, although it

sets in as stationary convection when a magnetic field is present.

In the simplest case of two free boundaries the characteristic equation for the critical

Rayleigh number takes the form

_ a0+ a){[(1+2)" + Ha’]* + Th(1 + 2)}

R 8
¢ z[(1+ 2)2 + Ha?] ®)
where
T T
T= and Ty = g (9)

and ¢ is the characteristic scale of the onset of instability. These equations determine the
instability threshold in the case of the onset of instability as stationary convection. In the

case of the onset of instability as overstability the characteristic equations take the form

l+z (1+z)? + Ha?
_o. 4 2 2 _2
Ra = 20— = T )~ Priie? (1 +2)2 + Pr2o’] (10)
where
T. (1+z)(1— Pr)— PrHa? Ha? |?
2 1
_ _ 1
R (1+2)*(1+ Pr) + PrHa? 1+2C+l+:1¢ : (11)

These equations are accurate in the case of low magnetic Prandtl number which is always

the case for crystal growth.
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The solution of these equations for Ekman number equal to £ = 1073 (or Taylor number
10%) and Prandtl number Pr = 0.2 is shown in figure (26). Let us consider the stability of
the flow with the increase of the magnetic field starting from Rayleigh numbers for which
the flow is stable in the absence of the magnetic field. As can be observed the flow may
become unstable at a certain level of the magnetic field. If we increase the strength of the

magnetic field even further the flow stabilizes once again.

The effect of the destabilization of thermal convection by the action of a magnetic field in
the presence of rotation is sensitive to the geometry, Prandtl number and configuration of
temperature gradients. The stability of the flow in crystal melts in the presence of magnetic

field and rotation should be studied using three-dimensional direct numerical simulation.

4 RNG-Based Modeling of Stratified Mixing

Renormalization group (RNG) methods are a general framework for “model building” in
which the complex dynamics of physical problems is described in terms of so-called “coarse-
grained” equations of motion governing the large-scale, long-time behavior of the physical
system. The RNG approach allows coarse-graining of physical phenomena as varied as critical
phenomena, high-energy physics, and, especially in the context of fluid dynamics, turbulence,
combustion, and heat transfer. The key idea is that the RNG method is applicable to
scale invariant phenomena lacking externally imposed characteristic length and time scales.
For turbulence, this means that the method is applicable to the description of the small
scales (small eddies) that should be statistically independent of the external conditions and
dynamical forces that create them through various kinds of instability phenomena. In other
words, the RNG method gives a theory of the so-called Kolmogorov equilibrium range of
turbulence, especially comprising the so-called inertial range of small-scale eddies whose
energy spectrum follows the famous Kolmogorov law E(k) ~ k~3/3. The importance of the
RNG results is, as we shall see, once the inertial range eddies can be accounted for in a
qualitatively correct way, we may then obtain coarse-grained equations of motion for the

other relevant variables of the turbulence, including, the mean velocity, rms velocities, etc.
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Figure 26: The stability diagram of critical Rayleigh number as the function of Hartmann
number for Ekman number 1073

Summary of the RNG Method

In the application of RNG methods for turbulence modeling, the local turbulent kinetic
energy K and the local energy dissipation rate £ are used to eliminate the large-eddy length
scale L from the dynamics, and the RANS equation of motion for U; is supplemented by
equations for K and £. The RNG method is used to evaluate otherwise unknown terms in

tehse equations for this K — £ model.

The resulting RNG K — £ model differs from classical (or standard) K — £ models in at

least six ways:
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e At high Reynolds number, the constants in the RNG K — € model are evaluated by
the theory;

o New terms appear like a rate of strain term, which is important for treatment of non-

equilibrium effects and flows in the rapid distortion limit;

e Impulse response modifications, important for non-equilibrium effects, are also taken

into account;

¢ Low Reynolds number modifications are given by the RNG theory, so wall function are

no longer required;
e Modified boundary conditions are developed from the theory;

e Stratification and rotation (swirl) effects are accounted for by extensions of the RNG
theory to stratified and rotating flow. Here we briefly describe these new effects as

developed in the present work.

RNG modeling of stratified turbulence

We have initiated the derivation of turbulence transport models for vertical mixing based
on the RNG analysis of stratified flows. This model will be used for the investigation of highly
turbulent flow inside the stratified gas surrounding the crystal and the melt, or for very high
Rayleigh numbers for the liquid flow inside the crucible as well. The classical theory of

turbulent thermal convection is based on the following main ideas:
1. The physics of boundary layers is independent of the processes taking place in the bulk
of the fluid outside the thermal boundary layers.

2. The energy and temperature spectra are E(k) ~ Er(k) ~ k=%/3. These assumptions are
sufficient to derive the classical result that the Nusselt number Nu, a non-dimensional

heat flux , satisfies

Nu ~ Ra'/®




where Ra is the Rayleigh number. In recent years, these classical assumptions have been
brought into question by Libchaber’s experiments at Chicago which covered a broad range
of Rayleigh numbers from 107 to more than 10'. The surprising result of these carefully

controlled experiments was that Er(k) ~ k~7/% and Nu ~ Ra?/".

Recently, a theoretical explanation of these experiments has been given by V. Yakhot
at CHI. The theoretical result shows that at intermediate Rayleigh numbers the Nusselt
number scales as Ra?/7, while at very large Rayleigh numbers Nu ~ Ra®1°. At Rayleigh
numbers of order of 10'3, the classical Ra'/® theory predicts heat fluxes that are an order
of magnitude larger than those found by either the Libchaber experimentsvor the Yakhot
theory.

An important outcome of the new theory is that the large-scale flow dynamics is governed

by not the energy flux &, but rather by entropy flux N at high Rayleigh numbers. Here, N

is given by N = &(VT)2. Consequently, the effective viscosity is estimated as:
g y

 KT?
vr = C# N (12)

where K is the turbulence kinetic energy and C, is a numerical constant. This formula

replaces the K — & model

VT:Cu 67

for turbulent flows dominated by the energy flux. Therefore, in order to successfully model
convective turbulence, equations for K, T2, and N are needed. The renormalization group
analysis applied to this problem leads to a set of equations for %, é’aL?’ %It\l, and gf. These
K — & — N turbulence transport equations have a form analogous to that of the RNG K — €
equations which have already been successfullyv applied to complex turbulent flows with

strong rotation, massive separation, flow transitions and other phenomena.
RNG description of anisotropic transport in stratified turbulence

The system of equations for mean velocity, U;, mean temperature, T' (relative to an

"ambient’ temperature Tp), mean pressure P, mean turbulent kinetic energy, K and mean
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energy dissipation rate, € are

%%‘ + Ujg—% = :0 gi + Vi Vals) + 6‘9 (uzZU ) + gB8:sT
e, ="
%? + Ujgg = Vi(.rViT) + 53—3(@3—2)
- %17{ + U,-gf—_ = Vi(Z2ViK) + aia(gigi + ;—;gi - gﬁnzaa—i p
U = V(2940 + 5 (255 + (O R T~ ot = Ced)

Let us introduce parameter of stratification (buoayancy frequency)
or
Q= —
N B2a )
Corresponding dimensionless parameter is
¢ =0K/e
Following Prandt! numbers can be defined as

o = Vh./Viso’

ay = v [vs,
a3 = vy /K,
oy = /K,

Here v;,, = CuKT2. All Prandtl numbers are functions of { only.

The system of the RNG equations for these anisotropic Prandtl numbers has the following

form:

do; .
dc f(a17a2’a3‘) (X,.;,C) 1= ]-,2, 3,4

where the RNG theory determines the explicit form of the function f;. It is these equations

that provide for the effective treatment of stratified flows.
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5 Future work

The work described here provides significant insights into the kinds of fluid dynamical effects
important to the MLEK process. In particular, our results on flow stabilization by rotation,
differential rotation and magnetic fields should have substantial impact on the choice of
operational flow regimes for successful crystal growth by the MLEK process. However, much
additional work needs to be done. In particular, additional work on the following kinds of

" problems is important for practical applications:

e Heat losses to the gas: Detailed consideration of modification of the flux boundary

condition at the free surface must be given to account for typical radiative or convective

heat losses to the surrounding gases.

e Interface tracking: An adaptive remeshing algorithm for interface tracking will have

significant impact, since the interface shape between the melt and the crystal and
between the melt and the gas has to dynamically be updated during the calculation.
For this, a spectral element adaptive algorithm similar to the one for moving boundaries

will, we believe, be most effective.

e Thermal stresses in crystal: Having calculated the shape and and temperature distri-

bution along the interface, the temperature and stress distribution inside the crystal
can be obtained. From the stress distribution, a density of dislocations can be obtained

inside the crystal which can give information about the quality of the crystal produced.

e Multi-species composition: Another interesting direction is the incorporation of differ-

ent species concentrations as part of the melt composition. This is now straightforward-
numerically, but its difficulty lies in the fact that initial and boundary conditions might

not be available or traceable from experiments.
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